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Abstract 

Speech acoustic patterns vary significantly as a result of 

coarticulation and lenition processes that are shaped by 

segmental context or by performance factors such as 

production rate and degree of casualness. The resultant 

acoustic variability continues to offer serious challenges for 

the development of automatic speech recognition (ASR) 

systems. Articulatory phonology provides a formalism to 

understand coarticulation through spatiotemporal changes in 

the patterns of underlying gestures. This paper studies the 

coarticulation occurring in certain fast spoken utterances using 

articulatory constriction tract-variables (TVs) estimated from 

acoustic features. The TV estimators are trained on the 

University of Wisconsin X-ray Microbeam (XRMB) database. 

The utterances analyzed are from a different corpus containing 

simultaneous acoustic and Electromagnetic Articulograph 

(EMA) data. Plots of the estimated TVs show that the 

estimation procedure successfully detected the articulatory 

constrictions even in the case of highly coarticulated 

utterances that a state-of-the-art phone recognition system 

failed to detect. These results highlight the potential of TV 

trajectory estimation methods for improving the performance 

of phone recognition systems, particularly when sounds are 

reduced or deleted.  

Index Terms: Coarticulation, Speech production, Speech 

inversion, articulatory phonology 

1. Introduction 

 

Conversational speech exhibits significant variability due to 

speaking rate, accents, cognitive load, etc. Coarticulation and 

reduction are common phenomena that occur in fast rate 

speech, especially affecting the acoustic properties of the 

speech signal that relate to manner and place of articulation. 

The resulting acoustic variability continues to offer serious 

challenges for the development of automatic speech 

recognition (ASR) systems that can perform well with 

minimal constraints. For example, conventional ASR systems 

attempt to account for coarticulatory effects through tri- or 

quin-phone and cross-word models; however it is inherently 

difficult to quantify a fixed scope for coarticulatory effects. 

Articulatory Phonology (AP) [1]  provides a unified 

framework for understanding how spatiotemporal changes in 

the pattern of underlying speech gestures can lead to 

corresponding changes in the extent of inter-gestural temporal 

overlap and the degree of gestural spatial reduction. In turn, 

these changes in overlap and reduction create acoustic 

consequences that are typically reported as assimilations, 

insertions, deletions and substitutions. The Task Dynamics and 

Applications (TADA) model of speech production represents 

speech production actions as a set of vocal-tract constriction 

degree and position variables (TVs) [2]. It has been shown [3]  

that the performance of acoustic-to-articulatory speech 

inversion systems can be improved when training procedures 

incorporate synthetic acoustic and articulatory (TV) data 

generated by the TADA model. Such procedures have been 

shown to improve the noise robustness of ASR systems [4]. 

However, synthetic speech and articulatory trajectories do not 

display all the variability observed in natural speech, and, 

hence, it is essential to incorporate acoustic and articulatory 

data from actual speakers when training speech inversion 

systems to improve their generalizability. In this paper, all 

speech inversion systems estimate articulatory data as TVs; 

thus, we will often refer to them as TV estimators. 

Fast rate speech leads to significant coarticulation and 

reduction phenomena. For example, in “perfect memory”, the 

‘/t/’ often appears to be deleted acoustically due to the overlap 

of the lip closure for ‘/m/’ with the tongue tip constriction for 

‘/t/’; examination of the TV trajectories, however, shows that 

the underlying gestures persist. To obtain data to investigate 

such contexts we recorded speech at normal and fast rates 

concurrently with Electromagnetic Articulograph (EMA) data, 

using the IEEE sentences [5] as the corpus for this task. We 

will refer to this dataset as the EMA-IEEE database. A 

complete description of the recordings of the EMA-IEEE 

sentences is given in section 2. 

Recording of articulatory data is an expensive and time 

consuming process. Since it is not feasible to record data from 

a large number of subjects, we augmented recorded data with 

models for estimating articulatory trajectories from acoustics. 

In this paper, we trained artificial neural networks (ANNs) for  

acoustic-to-articulatory speech inversion using speech and 

articulatory data obtained from the U.W. X-ray Microbeam 

(XRMB) database [6]. A description of these speech inversion 

systems is given in section 3. The trained speech inversion 

systems were used to estimate TVs for specific fast and 

normal rate utterances from the EMA-IEEE database. TVs 

were estimated from the sensor positions recorded using EMA, 

and were compared to the actual TVs obtained from the 

Electromagnetic Articulograph (EMA) recordings of the same 

IEEE sentences. A speech inversion system was also trained 

on the articulatory (EMA) data recorded for this experiment. 



This paper compares the ability of various speech inversion 

systems to detect an utterance’s underlying gestures given the 

significant coarticulation effects of fast speech.  

Section 4 outlines the experimental procedures. The analysis 

and discussion of the selected fast utterances is presented in 

section 5.  

2. The EMA-IEEE dataset 

2.1. Dataset description 

A female native speaker of American English in her mid-

twenties with no self-reported speech or hearing deficits 

produced the 720 IEEE sentences at ‘normal’ and ‘fast’ 

production rates, where normal was her preferred rate 

(approximately 2.9 syllables/sec), and fast was produced 

approximately 20% more quickly. A WAVE EMA system 

(Northern Digital) was used to observe the trajectories of 

sensors placed midsagittally on the speaker’s tongue (dorsum, 

blade, and 1 cm posterior from apex), jaw (lower incisors), lips 

(upper and lower vermillion border, and left mouth corner), 

together with reference sensors placed on the upper incisors, 

nose, and mastoid processes used to correct for head 

movement.  The movement data were sampled at 100 Hz 

together with synchronized audio at 22050 Hz.  In post-

processing, movement data were aligned to the speaker’s 

occlusal plane and low-pass filtered at 20 Hz, providing the 

anterior/posterior, inferior/superior, and lateral positions of 

each sensor relative to an origin centered on the upper incisor 

reference. 

2.2. Conversion of EMA data to TVs 

The sensors described above along with the palate trace of the 

female speaker were used to estimate constriction degree 

(TTCD, TBCD) TVs from the tongue tip (TT) and tongue 

body (TB) EMA sensor positions by computing the minimum 

distance between the pellets and the palate along the 

midsaggital plane. Lip Aperture (LA) was computed as the 

distance between the Upper Lip (UL) and Lower Lip (LL) 

sensors. The TBCD, TTCD and LA TVs were computed by 

the following formulae: 

𝐿𝐴 = (𝑈𝐿𝑥 − 𝐿𝐿𝑥)2 + (𝑈𝐿𝑦 − 𝐿𝐿𝑦)2 +  (𝑈𝐿𝑧 − 𝐿𝐿𝑧)2  (1) 

𝑇𝐵𝐶𝐷 = 𝑀𝑖𝑛{𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇𝐵, 𝑝𝑎𝑙𝑎𝑡𝑒) }   (2) 

𝑇𝑇𝐶𝐷 =  𝑀𝑖𝑛{𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇𝑇, 𝑝𝑎𝑙𝑎𝑡𝑒)}   (3) 

Figure 1 shows the three constriction degree TVs and the 

EMA sensor positions superimposed on the anterior vocal 

tract.  

3. Speech inversion systems 

ANNs were used to estimate TV trajectories [3] from the 

speech signal. An ANN can have M inputs and N outputs; 

hence, a nonlinear complex mapping of M vectors into N 

different functions can be achieved. In such an architecture, 

the same hidden layers are shared by all N outputs, giving the 

ANN the implicit capability to exploit any correlation that the 

N outputs may have amongst themselves. The feed-forward 

ANN used in our study to estimate the TVs from speech were 

trained with back propagation using a scaled conjugate 

gradient algorithm. 

 

3.1. Articulatory datasets 

Speech Inversion (SI) systems were trained using two different 

sets of acoustic and TV data (see Table 1).  

Table 1: Description of different articulatory datasets used for 

training speech inversion systems 

Dataset Description 

XRMB 

natural 

speech 

Complete U.W. X-ray microbeam database 

with pellet trajectories converted to TVs using 

the method outlined in [7] 

EMA-IEEE 

converted to 

TVs 

EMA articulatory data described in Section 

2.1 converted to TVs using the method 

outlined in Section 2.2 

3.2. Data preparation and feature extraction 

The XRMB database [6] consists of continuous speech data 

along with horizontal and vertical displacements of 8 pellets 

placed on the speaker’s lips, tongue and jaw. The X-Y pellet 

displacement measures were converted into a set of 6 

constriction degree and location TV trajectories using a 

geometric transformation as outlined in [7]: Lip Aperture and 

Protrusion (LA, LP), Tongue Body Constriction Degree and 

Location (TBCD, TBCL), and Tongue Tip Constriction 

Degree and Location (TTCD, TTCL). The transformed XRMB 

database consisted of 1720 sentences across 46 different 

speakers, constituting of a corpus of ‘groundtruth’ TVs.  

The speech signal, downsampled to 8 kHz, was parameterized 

as MFCCs where 13 cepstral coefficients were extracted using 

a Hamming analysis window of 20ms with a frame rate of 

10ms. The TVs and MFCCs were mean and variance 

normalized to have zero mean and a variance of 0.25. The 

mean and variance normalization was performed separately for 

every speaker in the database. This ensured some 

normalization of inter-speaker variations in measurements of 

acoustics and articulations. The MFCCs were then 

contextualized by concatenating every other feature frame 

within a 160ms window on either side of each frame. 

3.3. ANN Training 

For the ANN-based TV estimator, the input dimension was 

221 (= 13 MFCCs x 17 frames) and the output dimension was 

6 (= 6 TVs).  Eighty percent of the data was used for training, 

and 10% each was used for cross validation and testing. A 2 

hidden layer neural network was trained in a greedy layer-wise 

manner. Networks with different numbers of hidden-layer 

neurons (100 to 500) were trained, and among them the best 

performing network was chosen for training the 2nd hidden 

layer. Network size was not increased to include further 

hidden layers as the performance improvement of the second 

 

Figure 1: EMA sensors and associated TVs 



over the single hidden layer network was marginal. The 

performance of the TV estimator was measured by computing 

the Pearson Product Moment Correlations (PPMC) of the 

estimated TVs with the groundtruth TVs on the test set. 

3.4. TV estimator training results 

 Four different TV estimators were trained using the two 

datasets described in section 3.1. A TV estimator was trained 

on the complete XRMB database. This estimator is referred to 

as X_NORM. To normalize gender specific acoustic variations, 

the XRMB database was divided into male and female speaker 

utterances and a TV estimator was trained on each of these 

subsets. The systems trained on these gender specific subsets 

are referred to as XF_NORM and XM_NORM. Another TV 

estimator was trained using the EMA-IEEE dataset. This 

system estimates only 3 TVs (LA, TBCD, and TTCD) as the 

other TVs were not computed from EMA trajectories. We refer 

to this estimator as E_IEEE. Table 2 summarizes these TV 

estimators. 

 

The trained TV estimators were tested on 10% of their 

respective datasets where the sentences were chosen 

randomly. The performance of the TV estimator was measured 

by the Pearson Product Moment Correlation (PPMC) between 

the estimated and ground-truth TVs using the test set. The 

results for the different TV estimators are given in Table 3. 

4. Experimental procedure 

Effects of coarticulation and reduction can be expressed in 

many forms in fast rate speech including deletion, assimilation 

and substitution. In this paper, we selected two utterances from 

the EMA-IEEE dataset and one utterance from an earlier study 

[8] illustrating coarticulation effects. Both fast rate and normal 

rate utterances of these selected sentences were analyzed. 

Articulatory data was converted to TV representation using the 

same method described in section 2.2. The following are the 

three sentences chosen for analysis. 

1. The empty flask stood on the tin tray. 

2. The beam dropped down on the workman’s head. 

3. She had a perfect memory for details. (from [8] ) 

The words in bold contain the clusters of interest.  None of the 

above utterances were included in any of the TV estimators 

trained. Each of these utterances was analyzed using the TV 

estimators described in section 3. We analyzed only the LA, 

TBCD, and TTCD TVs. 

5. Results and analysis 

 The average correlations of the estimated TVs with actual TVs 

for the three selected utterances are shown in Table 4.  

 

From Table 4, we can see that the E_IEEE system has the 

highest correlations for sentences 1 and 2 since those 

utterances were produced by the same speaker (note that these 

utterances were not included in the training of this system). 

Hence, we plotted the estimated TVs from E_IEEE_ system for 

analysis of sentences 1 and 2. 

5.1. Analysis of “flask stood” 

Figure 2 shows spectrograms and the TVs for the normal-rate 

and fast-rate productions of sentence 1.  In the case of the 

normal-rate production, the consonant cluster /sk/ at the end of 

“flask” and the /st/ at the beginning of “stood” are clearly seen 

in the acoustics and both the actual and estimated TVs show 

constrictions in the right regions.   

 

 

However, in the fast-rate production of this utterance, the 

acoustics suggest that the /k/ in “flask” was not produced.  

Instead, it appears as if the /s/ in “flask” and the /s/ in stood are 

combined (the duration of this /s/ is about 30ms longer than 

Table 2: Summary of different speech inversion  

(TV estimator) systems 

TV estimator 

name 

Training dataset 

X_NORM XRMB utterances converted to TVs 

XF_NORM Female speakers’ utterances from 

XRMB database converted to TVs 

XM_NORM Male speakers’ utterances from XRMB 

database converted to TVs 

E_IEEE Single female speaker EMA data  

converted to TVs 

Table 3: PPMC results of trained TV estimators on their 

respective test data sets. (NA: TVs were not estimated) 

TV estimator 

name 

LA TBCD TTCD LP TBCL TTCL 

X_NORM 0.66 0.59 0.76 0.56 0.78 0.65 

XF_NORM 0.72 0.66 0.79 0.62 0.82 0.66 

XM_NORM 0.68 0.64 0.78 0.57 0.83 0.72 

E_IEEE 0.64 0.80 0.72 NA NA NA 

Table 4: Correlations (PPMC) of estimated TVs from 

different TV estimators for the selected sentences  

(n = normal rate, f = fast rate) 
TV estimator 

name 

flask stood workman’s 

head 

perfect 

memory 

n f n f n f 

X_NORM 0.56 0.59 0.61 0.75 0.40 0.51 

XF_NORM 0.56 0.59 0.55 0.72 0.28 0.55 

XM_NORM 0.56 0.59 0.59 0.63 0.44 0.58 

E_IEEE 0.86 0.82 0.75 0.79 0.18 0.44 

 
Figure 2: Actual (red solid line) and estimated (blue dash dot 

line) TVs for “flask stood” 



the ones in the normal-rate production) and this /s/ is then 

followed by a the /t/ in “stood”.  This appears to be a case 

where the fast-rate production resulted in no gesture being 

made for the /k/.  Although there is lowering of the TBCD 

gesture during the /t/, this lowering appears to be due to the /t/ 

closure and can be seen in situations where a /s/ or /t/ is 

produced without an adjacent velar consonant.  It is possible 

that this apparent deletion of the /k/ gesture is due to the 

complexity of these cluster sequences, which include four 

consecutive consonants.  

 

5.2. Analysis of “workman” 

Figure 3 shows spectrograms and the TVs for the normal-rate 

and fast-rate productions of sentence 2.  The actual and 

estimated TVs are strongly correlated across the utterance.  In 

particular, both show the /k/ constriction when it is produced 

as a stop in the normal-rate production and as a fricative in the 

fast-rate production.  Note that the /k/ gesture in the fast-rate 

production of the utterance is weaker than it is in the normal-

rate production of the same.  This not surprising given the 

estimated TVs are derived from the acoustics.   Finally, note 

that both sets of TVs show the closure of the lips for the /m/. 

 

Figure 3: Actual (red) and estimated (blue) TVs for 

“workman’s head” 

5.3. Analysis of “perfect memory” 

From Table 4, it can be seen that none of the TV estimators 

provide a reliable estimate of the 3 TVs that we are interested 

in analyzing. As a result, we trained speaker dependent TV 

estimators on all 46 speakers of the XRMB database. We then 

estimated TVs using each speaker’s TV estimator and then 

selected the system that best correlated with the actual TVs. 

We observed that the TV estimator trained on speakers JW29 

provided best correlations for normal rate and that trained on 

JW28 provided best correlations for fast rate. We used the 

estimated TVs from these models to analyze the “perfect 

memory” utterance.  

Figure 4 shows spectrograms and the actual and estimated TVs 

for sentence 3. As can be seen in the normal-rate production, 

the acoustics show a release burst for /k/ but not /t/, followed 

by a period of silence and then the /m/ murmur at the 

beginning of “memory”.  Both sets of TVs show a tongue-

body gesture for the /k/ that overlaps with the tongue-tip 

gesture for the /t/ and the lip gesture for the /m/.   In contrast, 

there is no silence between the last vowel in “perfect” and the 

first vowel in “memory”. Instead, this region appears 

acoustically as one sonorant consonant, i.e., the /m/.  However, 

the articulatory data tell a different story.  As in the normal 

rate speech, we see gestures for the /k/ and /t/, but with 

considerably more overlap between the gestures.  In particular, 

the /m/ gesture is fully overlapped with that of the other 

consonants.   Thus, this fast-rate production of “perfect 

memory” contains what we refer to as “hidden gestures” for 

the /k/ and the /t/.  Note that both of these gestures are 

apparent in the estimated TVs, although the closure for the lip 

gesture is weaker than the actual gesture. 

6. Conclusions 

The results show that the speech inversion systems perform 

reasonably well on unseen data containing challenging 

coarticulatory phenomena. Working with naturally-spoken 

data can result in speech inversion systems that produce TVs 

that closely match TVs computed directly from articulatory 

data.  However, the variability in the training data needs to be 

properly normalized or restricted.  Thus, a future goal of this 

work is to develop methodologies for coping with variability 

and choosing which of several different speech inversion 

systems will work for any given speaker, especially if that 

speaker’s data has not been used as part of the training data. 
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