
 The database consists of 2500 speech utterances with pellet trajectories 

across 57 different speakers. 

 The database provides X and Y coordinates  of the pellets as the subject 

produces the desired utterances. 

 However, these pellet positions are closely connected to speaker 

anatomy and head positions leading to cross speaker variability. 

 A total of 1720 utterances across 46 speakers were successfully 

transformed to TVs. This formed the natural XRMB database 

 

 The Task Dynamics and Applications (TADA) system [2] from 

Haskins laboratories along with HLSyn [3] was used to generate 

synthetic speech along with time aligned TVs for the XRMB 

sentences. 

 The synthetic speech was then warped to align with the natural 

XRMB utterances. The same warping function was used to warp 

the synthetic TVs. 

 The details of this synthetic XRMB data generation are given in [4]. 

 The objective of this research is to train efficient acoustic to articulatory 

speech inversion systems on natural speech that provide reliable 

articulatory features for unseen test speakers. 

 We constructed two such systems using feedforward neural networks. 

One was trained using natural speech data from the XRMB database and 

the second using synthetic data generated by the Haskins Laboratories 

TADA model that approximated the XRMB data. 

 XRMB pellet trajectories were first converted into vocal tract constriction 

variables (TVs), providing a relative measure of constriction kinematics 

(location and degree). 

 TV-estimators were tested using previously collected acoustic data on the 

utterance “perfect memory” spoken at slow, normal, and fast rates.  

 The TV estimator trained on XRMB data (but not on TADA data) was able 

to recover the tongue tip gesture for /t/ in the fast utterance despite the 

gesture occurring partly during the acoustic silence of the closure. 

 The XRMB system (but not the TADA system) could distinguish 

between bunched and retroflexed /r/.  

 Speaker dependent TV estimators were trained an tested on matched 

and mismatched speaker conditions. 
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Uncovering coarticulation using TV 

estimators 

Uncovering bunched and retroflexed /r/ 

using the TV estimator 

 The X-ray microbeam (XRMB) database [1] consists of continuous 

speech along with time aligned coordinates of pellets placed at various 

points along the vocal tract as sown in Fig, 1. 

Synthetic XRMB database with synthetic TVs 

from TADA 

Speech Inversion systems 

Tract Variables Synthetic TV estimator Natural speech TV estimator 

LA 0.8881 0.7101 
LP 0.9150 0.5721 

TBCL 0.9419 0.6999 
TBCD 0.9086 0.5630 
TTCL 0.8876 0.5944 
TTCD 0.9223 0.7303 

 Speaker dependent TV estimators were trained using one of the 

speakers’ data from the XRMB database. 

 The speaker dependent TV estimator was used to obtain the TVs for 

the utterance “perfect memory” for the two cases – (1) clearly spoken 

(2) fast spoken 

 Figure 5 shows the estimated TVs (LA, TBCD, TTCD) for clearly 

spoken  utterance and Figure 6 shows the same TVs for fast spoken 

utterance. 

 Multi layer feed forward neural networks were trained to estimated the 

TVs from contextualized MFCCs. 

 We trained two such TV estimators – (1) on synthetic XRMB data, (2) on 

natural XRMB data. 

 The correlation between estimated and groundtruth TVs for the natural 

and synthetic TV estimators are shown in  

Table 1. 

XRMB pellet trajectories to  

Tract Variables 

 Tract variables (TVs) are continuous time functions that specify the 

shape of the vocal tract in terms of constriction degree and location of 

the constrictors. 

 The pellet trajectories from XRMB data are geometrically transformed 

into relative TV measures.  

 The XRMB data after transformation is represented in terms of six TVs 

as shown in Fig. 2. 

 

 We used the TV estimator to analyze utterances containing bunched 

and retroflexed production of the /r/ sound as determined from MRI [5]. 

 Figure 6 shows the tongue positions for the bunched and the 

retroflexed productions of /r/ 

 As seen in Figure 7, the natural TV estimator correctly uncovers the 

tongue tip and tongue body constrictions for the two types of /r/ 

productions. 

Analysis of Speaker dependent TV estimators 

 10 speakers containing at least 40 utterances were selected from the 

XRMB database (5 males & 5 females) to perform  this experiment. 

 Speaker dependent TV estimators were trained on each of the 10 

speakers.  

 Each TV estimator was tested in the matched speaker and 

mismatched speaker conditions. 

 As a crude approximation to speaker normalization, each speaker’s 

MFCCs and TVs were globally normalized using the mean and 

variance across all speakers. 

 The results of these experiments are shown in Table 2. 

 In [5], the authors show that the spacing between F5 and F4 is an 

acoustic signature for tongue shape.  F5-F4 for retroflex /r/s is around 

1340Hz And for bunched /r/s is around 740Hz 

  We low pass filtered the speech to remove the F4 and F5 frequencies 

from the spectrum. We then passed the filtered speech through the TV 

estimator.  

 We can see from figure 8 that the TV estimator does not show the 

correct tongue constrictions for the bunched and retroflexed /r/, 

providing further evidence that F5 and F4 information provides the 

distinction between bunched and retroflexed /r/. 

 The correlation between estimated and groundtruth TVs for the synthetic 

TV estimator are much better than that of the natural TV estimator 

because the synthetic speech is single speaker with very less 

variability in production.  

Table 1: Test set correlation values for TV estimators trained on natural 

and synthetic XRMB database 

Fig 3 

Fig 4 

Fig 5 

Fig 6 

Fig 7 
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Normalization scheme Test condition LA LP TBCL TBCD TTCL TTCD 
Mean 
correlation 

Independently 
normalized MFCC and 
TVs 

 
Mismatched 0.2164 0.3565 0.5741 0.2555 0.2591 0.5194 0.3635 
 
Matched 0.6193 0.6728 0.8372 0.6880 0.7547 0.7935 0.7276 

Independently 
normalized MFCC and 
globally normalized TVs 

Mismatched 0.2330 0.3703 0.5779 0.2702 0.2547 0.5140 0.3700 
 
Matched 0.6208 0.6861 0.8377 0.6977 0.7523 0.7946 0.7315 

Globally normalized 
MFCC and globally 
normalized TVs 

 
Mismatched 0.2214 0.3751 0.5878 0.2458 0.2611 0.5320 0.3705 
 
Matched 0.5701 0.6694 0.8254 0.6852 0.7417 0.7709 0.7104 

Speaker Independent 
estimator 0.8222 0.5748 0.7301 0.5564 0.5999 0.7323 0.6693 

Future directions 

Table 2: Results of matched and mismatched tests on speaker dependent 

TV estimators 
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