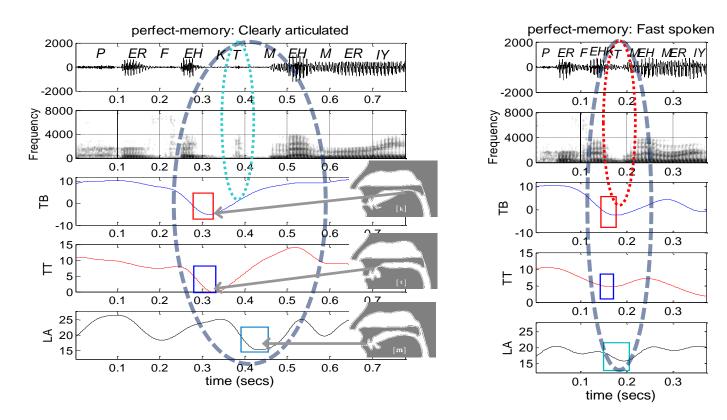


Analysis of coarticulated speech using estimated articulatory trajectories

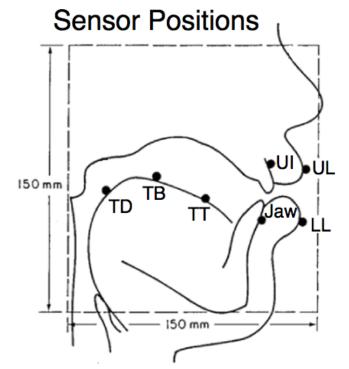
Ganesh Sivaraman¹, Vikramjit Mitra², Mark Tiede³, Elliot Saltzman⁴, Louis Goldstein⁵, Carol Espy-Wilson¹


¹University of Maryland College Park, MD, ²SRI International, Menlo Park, CA, ³Haskins Laboratories, New Haven, CT, ⁴Boston University, Boston, MA, ⁵University of Southern California, Los Angeles, CA

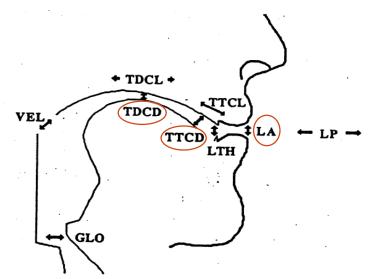
Overview

- Coarticulation: A significant source of speech variability
- Articulatory data collection
- Conversion of articulatory data to Tract Variables (TVs)
- Speech inversion
- Examples of estimated TVs for coarticulated utterances
- Discussions and Future directions

Coarticulation: A significant source of speech variability

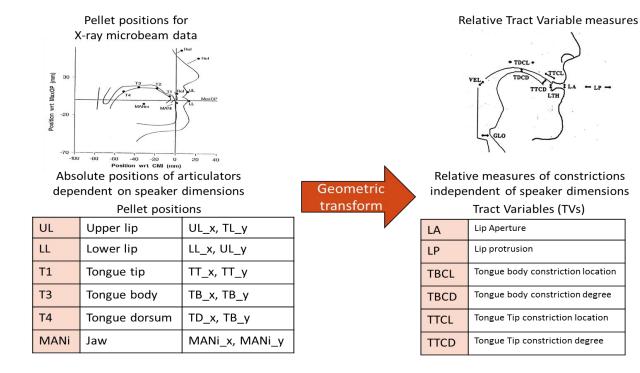

 Coarticulation is the overlap of vocal tract gestures of one sound with that of another leading to variability in acoustics

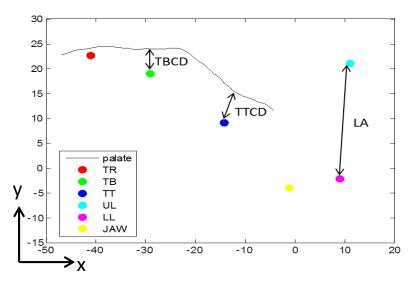
State-of-the-art ASR systems on fast									
speech									
SRI International's DECIPHER [®] Speech Recognition system GMM-HMM model with 4-gram phone based language model		SRI's conversational speech recognition Trained on conversational speech with the SRI Language Model							
Ground Truth	SRI phonetic recognizer	SRI word recognition							
flask stood	f I ae s k dh ey d	the empty flasks hidden under tinge tray							
(normal production)									
flask stood (fast production)	flaestuhd	the empty flustered and that the tin tray							
workman's (normal production)	w er m eh n d	the beam jot down on the work manned had							
workman's (fast production)	v er b ih n t	they've been cut down on the work been type							
perfect memory (normal production)	p er f ih k ah m er iy	she had a perfect memory for details							
perfect memory (fast production)	v er g eh r iy	share a part of the river details							


Articulatory data collection: The EMA-IEEE dataset

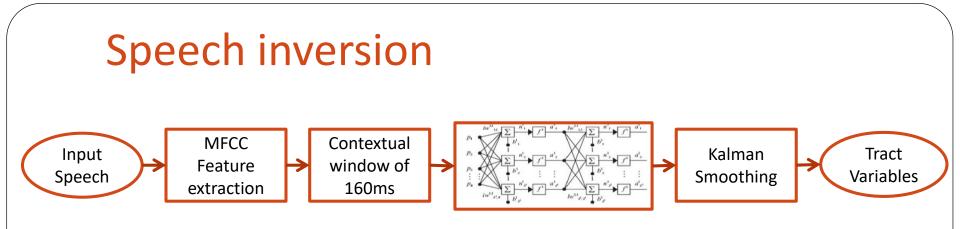
- Corpus: 720 IEEE Sentences (Harvard sentences)
- **Subject:** Female native speaker of American English in her mid-twenties.
- Speaking rate: Normal and Fast rates Normal rate of approximately 2.9 syllables/sec.
 Fast rate approximately 20% faster.
- Instrument: WAVE EMA system (Northern Digital)
- Sensor placements: As show in the figure

Tract Variables: What are they?


- Tract Variables (TVs) [Browman & Goldstein,1992] are measures of constriction degree and location executed by articulators in the vocal tract.
- Idea drawn from the Task Dynamics and Applications model (TADA) [Nam et al. (2004)] of speech production


- Browman, C. and Goldstein, L. (1992) "Articulatory Phonology: An Overview", Phonetica, 49: 155-180.
- Nam, H., Goldstein, L., Saltzman, E. and Byrd, D. (2004) "Tada: An enhanced, portable task dynamics model in matlab", J. Acoust. Soc. of Am., **115(5)**, 2, pp. 2430.

Why convert to TVs?


- TVs are a more speaker independent representation than pellet positions.
- Use the TADA theoretical framework to analyze the phonological phenomena.

Conversion of articulatory data to Tract Variables (TVs)

- Geometric transformations
- $LA = (ULx LLx)^2 + (ULy LLy)^2 + (ULz LLz)^2$
- TBCD=Min{Distance(TB,palate) }
- TTCD= Min{Distance(TT,palate)}

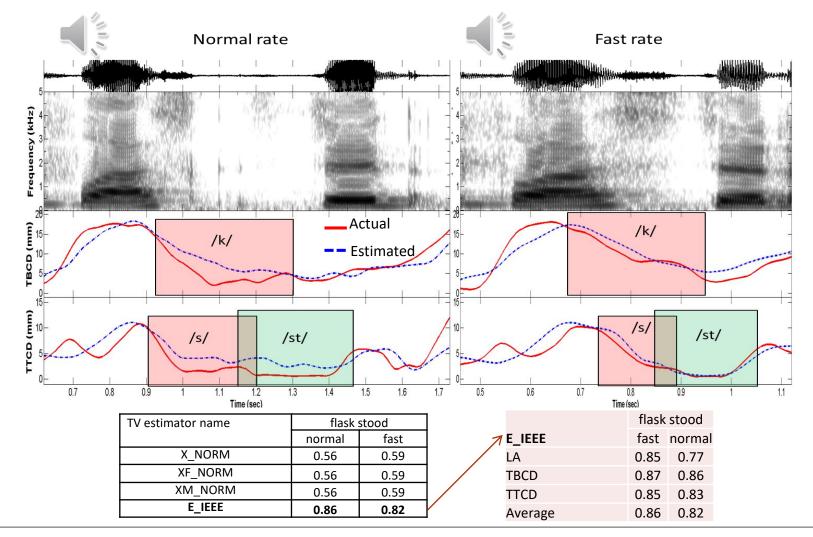
- Function mapping approach to speech inversion
- Artificial neural networks (ANN) suitable for the highly non-linear and non-unique mapping from acoustics to TVs [V.Mitra et al. 2010]
- Input features: Contextualized MFCCs (13 coeffs x 17 frames)
- Outputs: 6 TVs (LA, LP, TBCL, TBCD, TTCL, TTCD)
 - 3 TVs for EMA-IEEE dataset.
- Single Hidden layer networks
- 100 500 nodes in hidden layer
- Scaled conjugate gradient algorithm for training.

[•] V. Mitra, H. Nam, C. Y. Espy-Wilson, E. Saltzman, and L. Goldstein, "Retrieving Tract Variables From Acoustics: A Comparison of Different Machine Learning Strategies.," *IEEE J. Sel. Top. Signal Process.*, vol. 4, no. 6, pp. 1027–1045, Sep. 2010.

Various speech inversion systems

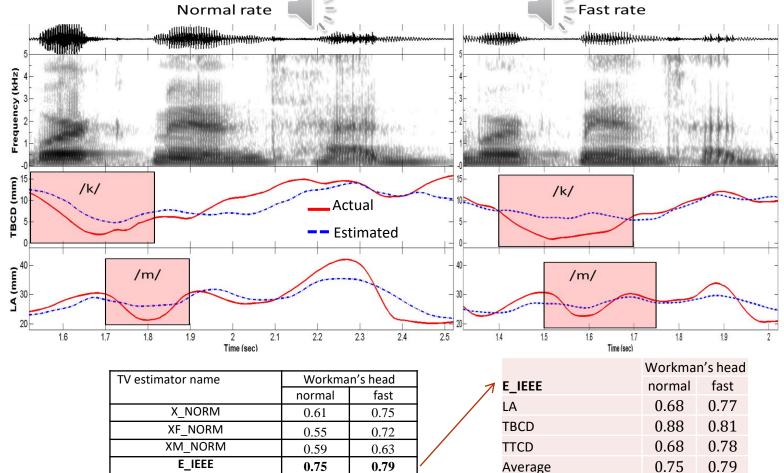
- The XRMB data [J. R. Westbury 1994] and the EMA-IEEE data were used to create 4 different speech inversion systems
- Speaker dependent systems were also trained for each speaker in the XRMD dataset

TV estimator name	Training dataset	No. of speakers	Hours of training data	
X_NORM	XRMB utterances converted to TVs using an algorithm outlined in [H. Nam, V. Mitra et.al. 2012]	46	4 hours	
XF_NORM	Female speakers' utterances from XRMB database converted to TVs	25	2.42 hours	
XM_NORM	Male speakers' utterances from XRMB database converted to TVs	21	1.55 hours	
E_IEEE	Single female speaker EMA data converted to TVs	1	1.03 hours	


- The Pearson Product Moment Correlation (PPMC) between actual and estimated TVs for the test set was used to evaluate the trained systems.
- PPMC varies from -1 to 1. A value of 1 signifies perfect correlation

TV estimator name	LA	TBCD	TTCD	LP	TBCL	TTCL
X_NORM	0.66	0.59	0.76	0.56	0.78	0.65
XF_NORM	0.72	0.66	0.79	0.62	0.82	0.66
XM_NORM	0.68	0.64	0.78	0.57	0.83	0.72
E_IEEE	0.64	0.80	0.72	NA	NA	NA

J. R. Westbury, "Microbeam Speech Production Database User''s Handbook," IEEE Pers. Commun. - IEEE Pers. Commun., 1994.


Example 1


• "flask stood" - The empty flask stood on the tin tray

Example 2

 "workman's head" - The beam dropped down on the workman's head.

Conclusion, Discussions and Future directions

- Speech inversion systems, can reliably uncover hidden or coarticulated gestures.
- Speaker dependent TV estimators are more accurate than speaker independent estimators. A speaker normalization scheme needs to be implemented in order to efficiently use articulatory data from different sources.
- A well defined scheme is needed to convert pellet data to TVs
- Data from more speakers needs to be collected for a thorough analysis of coarticulation in fast spoken speech.

Questions? Comments?